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This paper presents a theoretical method for the upscaling of the time-harmonic Maxwell equations. We use
the eddy current approximation of the Maxwell equations to describe the fields in heterogeneous materials. The
magnetic permeability of the media is assumed to have random heterogeneities given by a Gaussian random
field. The upscaling is based on the coarse graining method which applies projections and Green’s function
formalism in Fourier space to scale the electric field. An upscaled Maxwell equation is derived which includes
an effective magnetic permeability tensor. The effective permeability explicitly depends on the given scale for
the upscaling. The scale-dependent permeability is calculated by a second-order perturbative expansion, and
we discuss the future verification and the application of the results.
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I. INTRODUCTION

Eddy currents in heterogeneous magnetic materials are
induced by the electric field in the given media. The electric
field and, therefore, the eddy currents strongly depend on the
heterogeneity of the magnetic permeability of the materials.
The quantification of the eddy currents and the resulting
electric energy loss due to dissipation is very interesting for
engineering applications. To make a reliable prediction of the
energy loss on the macroscopic scale, however, it is essential
to incorporate the fine-scale structure of the materials. Sto-
chastic models are a valuable tool to analyze the electric field
in such materials. In the stochastic approach the heterogene-
ities of the media are modeled as a time-independent random
field with given statistical properties. The characteristic mac-
roscopic behavior then follows from appropriately defined
averages over the ensemble of all possible material realiza-
tions. Such an approach has been used in the past to deter-
mine effective dispersion coefficients for the macroscopic
scale behavior in transport theory, see, e.g., �1,2� for an over-
view. Since experimental results of macroscopic permeabili-
ties depend on the resolution scale at which the measure-
ments are done, it is important to study the impact of the
resolution scale on the electric field. However, the study of
scale-dependent magnetic permeability with the help of the
stochastic approach has been rarely focused on in the past.

For a long time the method of homogenization has been
used to get averaged or so-called homogenized equations for
various differential operators. This idea has been brought
onto the Maxwell equations by Jikov et al. and Bossavit
�3,4�. Therein the homogenized electric and magnetic prop-
erties of a material with a periodic microstructure have been
found from the solution of a local problem on the unit cell by
suitable averages. However, these studies are restricted to the
scaling of the Maxwell equations in periodic structures from
the view of a two-scale analysis, see also �5�. Recent studies

on homogenization of the Maxwell equations have also fo-
cused on properties of heterogeneous composite materials,
see �6–9�. A scaling theory for homogenization of the Max-
well equations has been developed for such materials by Vi-
nogradov and Aivazyan �7�. In �8,9� the homogenization of
the Maxwell equations at fixed frequency has been ad-
dressed, and the work of Dular et al. �6� investigated the
homogenization problem for thin layers by a magnetic vector
potential formulation. They combined for the first time the
eddy current approximation and homogenization in lamina-
tion stacks. Further developments of upscaling by the ho-
mogenization for laminated steel and anisotropic or amor-
phous cores has been done by Bergqvist and Engdahl �10�,
Kiwitt et al. �11�, and Shin and Lee �12�. However, due to
the assumption of periodicity, these studies are of limited
prediction for stochastic heterogeneous media. Moreover, the
homogenized results represent the physical behavior only for
a global upscaling without any possibility for an upscaling to
arbitrary intermediate length scales. Although the homogeni-
zation of the Maxwell equations has been well analyzed in
the literature, there are no studies which directly focus on the
scale-dependent upscaling of the Maxwell equations or the
eddy current approximation.

In this paper we use the theoretical concept provided by
the coarse graining method to upscale the electric field in the
eddy current approximation of the Maxwell equations. In
cases of upscaling of flow and transport processes in heter-
ogenous media the coarse graining method proved very use-
ful, see �13–15�. As shown in �13�, this method predicts the
exact scale-dependent transition for the effective hydraulic
permeability. We derive for the first time an upscaled equa-
tion for the electric field by the coarse graining method. The
method yields a scale-dependent effective permeability by
upscaling the heterogeneous magnetic material. The upscaled
magnetic permeability handles the scale transition from the
microscale to macroscale. By a perturbative expansion we
obtain explicit results for the upscaled permeability. In the
Appendixes we extend the coarse graining method toward a
numerical upscaling to be able to compute local upscaled
permeabilities. So far, the coarse graining method has been
merely used for the upscaling of scalar equations. The exten-
sion of this method for the upscaling of vector fields is also
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new. The results of the upscaling can be applied to predict
permeabilities of effective media in materials physics, such
as composite metamaterials or granular ferromagnetic met-
als, as well as to compute upscaled magnetic permeabilities
for aggregated grid elements in numerical simulations.

The conclusion of this brief review is that the effective
magnetic permeability is in general a tensor which reduces to
a scalar in isotropic media. The effective coefficients show
an increase with the resolution scale and adopt asymptotic
values for scales larger than ten correlation lengths. In the
anisotropic case, the asymptotic values depend strongly on
the correlation lengths.

II. EDDY CURRENT APPROXIMATION OF THE
MAXWELL EQUATIONS

For the derivation of the upscaling we consider the three-
dimensional �3D� Euclidean space R3 in which the electro-
magnetic problem is defined. In the time-harmonic approach
the electric field is given by E�x , t�=Re�E�x�exp�iwt��, the
magnetic field by H�x , t�=Re�H�x�exp�iwt��, and the current
is given by J�x , t�=Re�j�x�exp�iwt��, w�0. Due to the eddy
current approximation the system is then described by the
equations �see, e.g., Bossavit �16��

curl H�x� = j�x� ,

curl E�x� = − i���x�H�x�

for E�x� and H�x�. The magnetic permeability is denoted by
� and the electric conductivity by � in the following. Fur-
ther, we assume Ohm’s law where the current density is
given by j=�E+ jG with a generator current jG. In the electric
formulation we then get the second-order partial differential
equation

curl �−1�x�curl E�x� + i��E�x� = − i�jG�x� . �1�

In the following we use the identities curl curl=grad div−�
and �curl a�i=�ijk� jak, where �ijk denotes the asymmetric
Levi-Civita tensor and � j =� /�xj. The heterogeneous mag-
netic permeability ��x� is taken as a scalar field given by a
Gaussian random field. We define the inverse magnetic per-
meability 	 by 	�x�ª1/��x� where we assume 0
��x�

�.

A. Correlation function

In the stochastic approach the spatially inhomogeneous
distribution 	�x� is identified with a single realization of a
stochastic process defined by the ensemble of all possible
realizations. We assume this process to be statistically trans-
lation invariant in space which implies that the ensemble
average 	�x� does not depend on the position x. The overbar
always stands for the average over the ensemble. We split the
field into its deterministic mean and a random contribution,

	�x� = 	̄ + 	̃�x� , �2�

where 	̄=	�x� is a constant value and 	̃�x� is the fluctuation
field. For a Gaussian random field, 	̃�x� is a random function

with zero mean. We define 	̃�k�	̃�k��= �2��3�k+k��	̄2Ĉ�k�.
The Fourier transform is defined by f̂�k�=�d3xe−ik·xf�x� and

f�x�=�ke
ik·x f̂�k�, where �k¯ ��2��−3�d3k¯ is a shorthand

notation.

The function Ĉ�k� denotes the autocorrelation spectrum of
the inverse magnetic permeability. The approach is math-
ematically well-defined subject to some additional require-
ments for C. The particular functional form of C is to some
extent arbitrary. Reflecting the situation in a heterogeneous
material, it should drop to zero sharply for lengths larger
than the intrinsic correlation length scales li. We choose a
Gauss-shaped function for C. Thus the autocorrelation spec-

trum Ĉ�k� is given by Ĉ�k�=q0�2��3/2�i=1
3 li exp�−ki

2li
2 /2�.

The variance q0 measures the strength of the heterogene-
ities, and li, i=1, . . . ,3, denotes the correlation length of the
field in the direction of xi. In the anisotropic case two or
more correlation lengths are unequal. For an isotropic field
the lengths li are equally denoted by l0. In that case, the
correlation function merely depends on the distance �x−x��.

B. Green’s function in Fourier space

Due to Eqs. �1� and �2� the resulting equation for the
electric field reads

	̄ curl curl E�x� + i��E�x� = − i�jG�x� − curl 	̃�x�curl E�x�
�3�

which yields using div E=�

− 	̄�E�x� + i��E�x� = − i�jG�x� − 	̄ grad ��x�

− curl 	̃�x�curl E�x� . �4�

We define �ª− i�jG− 	̄ grad �, and we use Einstein’s sum
convention for the rest of the paper. Considering the ith com-
ponent of Eq. �4�,

− 	̄	
j=1

3

� j
2Ei�x� + i��Ei�x� = �i�x� − �ijk�klm� j	̃�x��lEm�x� ,

the Fourier transform yields

− 	̄	
j=1

3

�ikj�2Êi�k� + i��Êi�k�

= �̂i�k� − �ijk�klmikj

k�

	̂̃�k − k��ikl�Êm�k�� . �5�

Equation �5� can be rewritten as

Êi�k� = g0�k��̂i�k� − �ijk�klmg0�k�

k�

Rjl�k,k��Êm�k�� �6�

with the definitions Rjl�k ,k��ªikj	̂̃�k−k��ikl� and

g0�k�ª�	̄k2+ i���−1. We define Green’s function Ĝ�k ,k�� of
Eq. �6� by
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k�

�g0�k��−1im�k − k�� + �ijk�klmRjl�k,k���Ĝim�k�,k��

= �k + k�� �7�

with summation over the indices j ,k , l ,m, where the index i
is fixed. For Rjl�0, we obtain for the ith component of the

tensorial Green’s function Ĝii�k ,k��=g0�k��k+k��. Hence

Ĝ is diagonal for 	̂̃�0.

C. Projections in Fourier space

We define projections for cutting off high and low fre-

quency modes of the Fourier transformed Ê by

P�,k
−
„Ê�k�… ª �Ê�k� if �ki� � as/� for all i � �1,2,3

0 otherwise,
�

P�,k
+
„Ê�k�… ª �Ê�k� if �ki� � as/� for an i � �1,2,3

0 otherwise,
�

where P�,k
+ �P�,k

+ (Ê�k�)�= P�,k
+ (Ê�k�), and for P�,k

− analogously.
The parameter as�1 is a constant. If it is possible we will
omit the index � and k in the following and use

P�,k,k�
+ (Ê�k ,k��) instead of P�,k

+ �P�,k�
+ (Ê�k ,k��)�. Further, we

define the following operators

Li�Ê� ª
 Lim�k,k��Êm�k��d3k�

ª
 �g0�k��−1�k − k��im

+ �ijk�klmRjl�k,k���Êm�k��d3k�

Ri�Ê� ª − �ijk�klm
 Rjl�k,k��Êm�k��d3k�.

With the definition of Lim we obtain

�k�Lim�k ,k��Ĝim�k� ,k��=�k+k��ii �i fixed� for Green’s

function, that is, Lim
−1�k ,k��ª�2��−6Ĝim�k ,−k��. Further we

apply Eq. �7� for the projected Green’s function which en-
tails



k�

P�,k
+
„Lim�k,k��…P�,k�

+
„Ĝim�k�,k��… = P�,k,k�

+
„�k + k��…ii,

and, therefore �P�,k�
+ (Lim�k� ,k��)�−1

ª�2��−6P�,k�
+ (Ĝim�k� ,

−k��). The latter leads to the definition

�P+L�i
−1�Ê� ª

1

�2��3

k�

P�,k�
+ Ĝim�k,− k��Êm�k�� .

We remark that Green’s function fulfills LGi=ei where Gi
stands for the column vector �Gim�m=1,2,3. The summation
over the index m is given in LGi.

III. COARSE GRAINING METHOD

We develop the upscaling for the eddy current approxima-
tion of the time-harmonic Maxwell equation using the coarse
graining method. This method was developed and applied in
�13,14,17� to scale the flow and transport equation for het-
erogeneous media. The upscaling is based on filtering in
Fourier space, i.e., high oscillatory modes are eliminated by
cutting off the function values of the Fourier transform for
large wave vectors. The upscaling results in an upscaled
equation on larger scales starting from the process for the
fine-scale media. The coarse graining method does not model
the fine-scale heterogeneity up to the given length scale ex-
plicitly, but models the influences of the subscale fluctuations
by a scale-dependent parameter which incorporates the im-
pact of the unresolved fluctuations. In the following we de-
note the coarser scale by � and omit the Fourier variables k
and k�.

According to Eq. �6� and the definition of R the electric
field is given by

Êi = g0�̂i + g0Ri�Ê� �8�

which leads to the equation

Li�Ê� = �̂i. �9�

Further, it is obvious that

Êi = P�,k
+ �Êi� + P�,k

− �Êi� �10�

holds true due to the projections, see Sec. II C. From Eqs. �8�
and �9� we get Li�Ê�=g0

−1Êi−Ri�Ê� which leads to

P+�Li„P
+�Ê�…� = P+�g0

−1P+�Êi� − Ri„P
+�Ê�…�

= P+��̂i� + P+
„RiP

−�Ê�… .

Using the operator �P+L�i
−1 defined in Sec. II C, we get for Êi

P+�Êi� = �P+L�i
−1�P+��̂� + P+

„RP−�Ê�…�

= �P+L�−1�P+��̂�� + �P+L�−1�P+
„RP−�Ê�…� .

�11�

We project Eq. �8� with the aid of P− and insert then Eq. �10�
in the right-hand side, where P�,k

+ �Êi� is replaced by Eq. �11�,
which yields

P−�Êi� = P−�g0�̂i + g0Ri„P
−�Ê�…�

+ P−�g0RiP
+
„�P+L�−1

„P+��̂�……�

+ P−
†g0Ri�P+

„�P+L�−1
„P+

„RP−�Ê�…�…�‡ .

�12�

Under the assumption that �̂ is given on the macroscopic
scale, i.e., P+�̂�0, the second term of Eq. �12� vanishes. As

a result the equation for P−�Êi� can be rewritten as

P−�g0
−1Êi� = Si�k� + Qi�k� �13�

where
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Si�k� ª Pk
−��̂i�k� − �ijk�klm
 Rjl�k,k��P−

„Êm�k��…d3k�� .

The expression for Q is given by

Qi�k� ª P−
†Ri�P+

„�P+L�−1�P+
„RP−�Ê�…�…�‡

=
1

�2��6 Pk
−�− �ijk�klm
 Rjl�k,k��Pk�

+ �
 Pk�
+ Ĝmn�k�,− k���− �nqp�prs
 Rqr�k�,k��Pk�

−
„Ês�k��…d3k��d3k��d3k�� .

It represents the impact of the heterogeneity of the media of scales smaller than �. In the following, Q is approximated by its

mean Q̄ which corresponds to a mean-field approximation as done in �14�. The ensemble mean of Q is given by

Qi�k� = Pk
−��ijk�klmikj


k�
	̂̃�k − k��ikl�Pk�

+ �

k�

Pk�
+ Ĝmn�k�,− k���nqp�prsikq�	̂̃�k� − k�ikrPk

−
„Ês�k�…��

= Pk
−
„�ijkikj	kp

ef f�k,��ikr�prsÊs�k�… , �14�

where the last expression defines an inverse effective magnetic permeability tensor given by

	kp
ef f�k,�� ª �klm


k�



k�
	̂̃�k − k��ikl�Pk�,k�,�

+
„Ĝmn�k�,− k���nqpikq�	̂̃�k� − k�… .

The result represents a nonlocal effective material parameter. We apply a localization k=0 as done in �13,17�, and we obtain

	kp
ef f��� = �klm


k�



k�
	̂̃�− k��ikl�Pk�,k�,�

+
„Ĝmn�k�,− k���nqpikq�	̂̃�k��… . �15�

In the isotropic case, 	kp
ef f��� reduces to a diagonal tensor.

A. Upscaled time-harmonic model equation

According to Eq. �13� we obtain on the scale � using Eq.
�14�

P�
−�g0

−1Ei� = Si�k� + Qi�k�

= Pk
−��̂i�k� − �ijk�klm
 Rjl�k,k��

�P−
„Êm�k��…d3k�� + Pk

−
„�ijkikj	kp

ef f���

�ikr�prsÊs�k�… ,

so that P�
−�Ei� can be rewritten as

P�
−�Ei� = g0�k�Pk

−
„− i� ĵi

G�k� − 	̄�gradˆ ��i…

− g0�k�Pk
−��ijk�klmikj
 	̂̃�k

− k��ikl�P−
„Êm�k��…d3k��

+ g0�k�Pk
−
„�ijkikj	ef f���ikr�krsÊs�k�…

where the term �grad �ˆ �i is induced by iki�̂ in Fourier space.
The upscaled equation for the upscaled electric field E��x�
reads in physical space �using the equality 	̄ grad ��− 	̄�E�

=curl 	̄ curl E��

curl 	̄ curl E��x� + i��E��x�

= − i�j�
G�x� − curl 	̃��x�curl E��x�

+ curl 	ef f���curl E��x� .

The upscaled fluctuations 	̃��x� and the upscaled current

j�
G�x� are given by the Fourier back transform of P−�	̂̃� and

P−�jG�, respectively. Defining the effective permeability
�ij

ef f���ª �	̄−	ij
ef f����−1, the upscaled equation for E� on the

scale � is given by

curl���ef f����−1 + 	̃��x�curl E��x� + i��E��x� = − i�j�
G�x� .

Comparing the upscaled equation with the equation �1�, the
effective permeability �ef f��� includes the scale behavior
from the microscale for �=0 to the macroscale for �→�.

IV. EXPLICIT RESULTS BY A SECOND-ORDER
PERTURBATION THEORY

Explicit results for the scale-dependent inverse permeabil-
ity 	ef f can be derived by a second-order perturbation

theory where Green’s function reduces to Ĝmn�k ,−k��
=g0�k��k−k��mn. Hence we get from Eq. �15�
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	kp
ef f��� = �klm


k�
	̂̃�− k��ikl�Pk�,�

+ �	̄k�2 + i���−1�mqpikq�	̂̃�k��

which can be simplified to

	kp
ef f��� = − 


k�
�kqlp

− kpql�	̂̃�− k��kl�kq�Pk�,�
+ �	̄k�2 + i���−1	̂̃�k��

= − 

k�

Pk�,�
+ � 	̂̃�− k��	̂̃�k��

	̄k�2 + i��
��kk�kp� − kpk�2� . �16�

Analogous to �13,17� we introduce a smooth cutoff function
instead of Pk,�

+ for the calculations of 	kp
ef f��� by

Pk,�
+ → �1 − exp�−

k2�2

2aw
2 �� . �17�

The parameter aw�1 is a constant.

A. Isotropic case

We state the results for the isotropic case of a three-
dimensional system with isotropic correlations function. In
the given second-order approximation we obtain that the ef-
fective inverse magnetic permeability is a scalar, i.e., 	kp

ef f

=	ef fkp, where

	ef f��� =
2q0l0

3	̄2

3�2��3/2 
 k2

	̄k2 + i��
„exp�− k2l0

2/2�

− exp�− k2�l0
2/2 + �2/�2aw

2 ��…d3k

=
4q0l0

3	̄

3�2�
�M�l0

2/2;��/	̄� − M„l0
2/2 + �2/�2aw

2 �;��/	̄…�

�18�

using Eq. �17�. The function M�a ;b� is defined by

M�a;b� ª 

0

� x4 exp�− ax2�
x2 + ib

dx

=
��

4a3/2 −
i��b

2�a

+
�b3/2

2
�− 1�3/4 exp�iab�erfc��iab� .

The error function erfc�x� is defined as given by �18�. In Fig.
1 the scale-dependent behavior of �ef f��� is shown for dif-
ferent isotropic correlation lengths l0 for conductivity �=0.

B. Anisotropic case

In the case of an anisotropic correlation function the result
for the effective inverse permeability no longer reduces to
standard integrals. From Eq. �16� we get using Eq. �17�

	kp
ef f��� = − q0	̄2�2��3/2
 �1 − exp�−

k2�2

2aw
2 ��

�
�i=1

3
li exp�− ki

2li
2/2�

	̄k2 + i��
�kkkp − kpk2�d3k

= − q0	̄2�2��3/2
 

0

�

d� exp�− ��	̄k2 + i����

� �1 − exp�−
k2�2

2aw
2 ���kkkp − kpk2��

i=1

3

li

�exp�− ki
2li

2/2�d3k . �19�

To derive an approximate result for 	kp
ef f we expand the in-

tegrand of Eq. �19� with respect to � and consider only the
leading-order term for �→0. Thus we expand the exponen-
tial function of the integrand by exp�−�i����1−�i��,
and we account for the constant term only. The inverse per-
meability reads then in lowest-order of �

	kp
ef f��� = − q0	̄l1l2l3�2��3/2


k
�1 − exp�−

k2�2

2aw
2 ��

�exp�− 	
j=1

3

kj
2lj

2/2� 1

k2 �kkkp − kpk2� .

As a result we obtain 	kp
ef f =0 for indices k�p. The results

for 	ii
ef f��� are given in Appendix A. The resulting effective

magnetic permeability is shown in Fig. 2 for variance q0
=0.1 and for different correlation lengths, where we get
	22

ef f =	33
ef f for l2= l3. The graph shows the longitudinal and

transversal permeability as a function of the scale �. It is
obvious that the asymptotic value strongly depends on the
correlation lengths of the media. The effective value in the
direction of the larger correlation length is higher than in the
direction of the smaller correlation length, and the stronger
the anisotropy the larger the difference between �11

ef f and
�22

ef f.

FIG. 1. Scale-dependent behavior of �ef f��� in the isotropic case
for �=0, 	̄=1, q0=0.1, aw=2, and different correlation lengths l0.
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V. DISCUSSION

Due to increasing experimental studies of materials and
material phenomena reveiling new properties it is important
to study theoretical approaches to model the underlying and
scale-dependent material effects. To this end, a theoretical
approach for the upscaling of material parameters is essen-
tial. However, based on the approximations the theoretical
upscaling uses, it must be verified by numerical simulations
or experimental data to prove its reliability. For the theoret-
ical upscaling of flow and transport in heterogeneous media
the applied coarse graining method proved primely its reli-
ability according to small-scale and macroscopic numerical
simulations, see, e.g., �13,19�. We would like to extend the
numerical verification of the coarse graining method in the
same fashion for the results obtained for the electromagnetic
case. As a matter of fact we have to use an extended varia-
tional formulation of the equations of interest �see Eq. �B3�
in Appendix B� in an appropriate Sobolev space. As Eq. �B3�
includes the Laplace operator as well as the curl curl opera-
tor, a special treatment for the computation is due which
turns out to be an inconvenient and extended finite element
formulation �see also �16��. Nevertheless, we would like to
perform a direct validation by numerical experiments in a
future study. This validation will be analogous to the numeri-
cal verification of the upscaling of flow and transport in het-
erogeneous media where the results by the coarse graining
formalism are well verified by the numerical simulations, see
�13,19�. Currently, we are developing the appropriate dis-
cretization schemes to be able to compute the numerical up-
scaling, in particular, the permeability �ef f���. It will enable
us to compare the theoretical results of Sec. IV with numeri-
cal results.

The applications of the coarse graining method lie in the
theoretical derivation of enhanced magnetic permeabilities.
Such permeabilities arise in heterogeneous media given by,
for instance, suspensions of solid particles with a high mag-
netic permeability in a liquid metal as discussed, e.g., experi-

mentally in �20�. In this case the effective permeability is
given as a function of the increasing volume fraction as mea-
sured in �20�. Other candidates for heterogeneous media are
polymer composites, which also exhibit relatively high mag-
netic permeabilities, or turbulent fluids with macroscopic
magnetic particles. The upscaling method can also be applied
to calculate the effective magnetic properties of composite
metamaterials consisting of periodically arranged circular
conductive elements. The effective permeability as a func-
tion of the lattice width is an important quantity here. As
shown in �21� the permeability strongly depends on the
width of the computational grids used in numerical simula-
tions. Many recent experimental studies have shown the pos-
sibility to create novel types of microstructured materials
which demonstrate very interesting properties, see, e.g., �22�.
Consequently, the upscaling results of the paper can be ex-
tended to cover the frequency dependence of the magnetic
permeability, by evaluating 	ef f��� for nonzero � from Eq.
�18� in the isotropic case or from Eq. �19� in the anisotropic
case, as well as to be a function of the macroscopic volume
fraction of magnetic particles in the media.

The understanding how the electric field depends on the
resolution scale is also important to construct numerical
models with coarser resolution scale. Here, upscaling meth-
ods may help to incorporate subgrid-scale information into
the effective parameters of numerical models as given, e.g.,
in the recent work of Sterz �23�. For this reason, an applica-
tion of the presented upscaling is the implementation of its
results in computations using multigrid methods to improve
the convergence efficiently. In the case of upscaling of flow,
the numerical application of the upscaling and implementa-
tion in a multigrid method has already been done and has
been proven very useful, see �24�.

VI. CONCLUSION

We apply the coarse graining method to scale the electric
field in the eddy current approximation of the Maxwell equa-
tions. The magnetic permeability of the material is assumed
to have random heterogeneities given by a Gaussian random
field. We derive an upscaled equation for the electric field
which exhibits a scale-dependent effective permeability. The
effective permeability is in general a tensor. We calculate the
resulting magnetic permeability by a perturbation theory to
obtain the dependence on the resolution scale. In the case of
isotropic media the permeability reduces to a scalar value
which increases with the scale and reaches its asymptotic
value after ten correlation lengths. In the case of anisotropic
correlation, the asymptotic values of the effective permeabil-
ity coefficients depend strongly on the correlation lengths.
Here, the larger the correlation length is the stronger the
increase of the permeability as a function of the scale.

According to the derivation in the Appendixes, the upscal-
ing method can be seen as an extension of the homogeniza-
tion method towards the nonperiodic heterogeneous case
where the upscaled permeability of the material is found
from the solutions of local problems. The coarse graining
method can therefore be applied to compute local upscaled
magnetic permeabilities by numerical simulations.

FIG. 2. Scale-dependent behavior of �11
ef f��� and �22

ef f��� as
given by the leading-order approximation �A1� for the anisotropic
case with 	̄=1, q0=0.1, aw=2, and correlation lengths
�2l0 , l0 /2 , l0 /2� and �4l0 , l0 /4 , l0 /4�.
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A subsequent paper will be dedicated to the validation of
the method and its results by numerical simulations using
computer-generated heterogeneous media analogously to the
numerical verification done in the work �13�.

APPENDIX A: RESULTS FOR ANISOTROPIC
CORRELATION

In the case of an anisotropic correlation function the result
for the effective inverse permeability is given for k= p=1 by

	11
ef f��� =

q0	̄

�2��3/2 l1l2l3

0

�

d�
 exp�− �k2��1

− exp�−
k2�2

2aw
2 ��exp�− 	

j=1

3

kj
2lj

2/2��k2
2 + k3

2�d3k

=
q0	̄

4�2
l1l2l3


0

�

d�„�� + l1
2/2�−1/2��� + l2

2/2�−3/2��

+ l3
2/2�−1/2 + �� + l2

2/2�−1/2�� + l3
2/2�−3/2�

− �� + �2/�2aw
2 � + l1

2/2�−1/2��� + �2/�2aw
2 �

+ l2
2/2�−3/2�� + �2/�2aw

2 � + l3
2/2�−1/2 + �� + �2/�2aw

2 �

+ l2
2/2�−1/2�� + �2/�2aw

2 � + l3
2/2�−3/2… . �A1�

Analogously, we obtain 	22
ef f by exchanging l1↔ l2 in Eq.

�A1�, and 	33
ef f by exchanging l1↔ l3.

APPENDIX B: LOCAL UPSCALED PERMEABILITY IN
REAL SPACE

In the case of an infinite length scale, i.e., �→�, the
coarse graining method yields

	ij
ef f = �ilm


k



k�
	̂̃�− k�iklĜmn�k,− k���nqjikq�	̂̃�k��

which reduces due to the Fourier back transform to

	ij
ef f = �ilm
 	̃�x��xl

Gmn�x,x���nqj�xq�
	̃�x��dx�dx .

Consequently, the tensorial Green’s function Gim fulfills for
fixed index i �summing over m� the differential equation

− 	̄	
j=1

3

� j
2imGim�x,x�� + i��imGim�x,x��

+ �ijk�klm� j	̃�x��lGim�x,x�� = �x − x�� . �B1�

For finite length scales � we obtain for the upscaled inverse
permeability

	ij
ef f��� = �ilm
 	̃�x�S�x − x�,���xl�

Gmn�x�,x���nqjS�x� − x�,���xq�
	̃�x��d3x� ¯ d3x

where the distribution S

is defined by S�x ,��ª�k exp�ik ·x�P�,k
+ =�x�

−�i=1
d �sin�xias /�� /�xi� according to the projection P�,k

+ in
Fourier space. The expression for S�x−x� ,�� in 	ef f��� is
now simplified by an approximation similar to that in �13�.
The integration over the convolution of S is approximated by
a local smoothing ��S� f��x��d3x����

�
�x�f�x��d3x� �x fixed�,

which reproduces the exact integral for �=0 and �→�. The
smoothing is made over a volume ��

�x� proportional to �d

where ��
�x� defines the d-dimensional cube ��

�x�
ª�i=1

d �xi

−� /as ,xi+� /as� with origin x. Taking this approximation
into account we obtain

	ij
ef f��� = �ilm
 	̃�x��xl


��
�x�

Gmn�x,x���nqj�xq�
	̃�x��d3x�d3x ,

substituting the second term of S by the delta function. Fur-
ther, we approximate Green’s function Gmn�x ,x�� in 	ef f by
a local Green’s function G�x� for ��

�x�. To simplify the equa-
tion for the local Green’s function we introduce an auxiliary
function

�mj
�x��x�� ª 


��
�x�

Gmn
�x��x�,x���nqj�xq�

	̃�x��d3x�

where x����
�x�. Using Eq. �B1� this function �im

�x��x�� fulfills
an auxiliary equation in ��

�x�

− 	̄	
j=1

3

�xj�
2

in�im
�x��x�� + i��in�im

�x��x��

+ �ijk�kln� j	̃�x���l�im
�x��x�� = �nqm�xq�

	̃�x��in,

where the indices i and m are fixed. With the help of ��x� a
local upscaled inverse permeability for ��

�x� is then given by

	ij
ef f��,x� = �ilm


��
�x�

	̃�x���xl�
�mj

�x��x��d3x�. �B2�

We remark that the function fulfills �im
�x��x��=in�nm

�x��x�� be-
cause of ��0 for i�n, and the auxiliary equation reads in
real space for fixed i
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− 	̄�in�im
�x��x�� + i��in�im

�x��x��

+ �curl 	̃�x��curl �·m
�x��x��in�i = in�nqm�q	̃�x�� . �B3�

As appropriate boundary conditions on ���
�x� we propose

�ijknj�km
�x� =0 for all i ,m� �1,2 ,3 where n denotes the outer

unit normal of ���
�x�. Thus Eq. �B3� can be solved numeri-

cally and due to Eq. �B2� 	ij
ef f�� ,x� can be computed as a

function of the scale and the location.
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